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It can be argued that the stability characteristics of the linear equation
(2.47) are very similar to the stability charactetistics of the equation of the
form given by (2.46). Since the terms Bt and C will give rise to correspond-
ing terms in both numerical and exact solutions which are also linear in
1(A#0), we conclude that (2.46) exhibits short-range numerical instability in
the neighbourhood of (t,, y»), when the corresponding equation (2.45) with
A = f, (ta, y»), exhibits numerical instability. Therefore, the stability analysls
will be based on the equation

Y'=flt, )=Ay, y (1) = yo (2.48)

where ( :}{ )

and it is assumed that (9f/9y) is relatively invariant in the region of interest.

. Equation (2.48) has as its solution

Y ()=y (to) exp (A (1 —1,))
which at =14+ nh becomes
¥ (ta)=y (to) b=y, ()"
A singlestep method when applied to (2.48) will lead to a first order difference
equation which has solution of the form
yn=cy (E (An)y"
where ¢, is a constant to be determined from the initial condition and E (k)
is an approximation to eM. We call the singlestep method
Absolutely stable if | E(Ah) | € 1
Relatively stable if | E(Ah) | < er*

If A < 0, the exact solution decreases as 1, increases and the important
condition is the absolute stability, since the numerical solution must also
decrease with In. If Euler’s method is used, we obtain

yn+l=}’n+hfu=E ('\h) Yn
where EQR)=14Ah.
Obviously, Euler’s method is absolutely stable if
1+ Clor -2 M <0
If A > 0, the exact solution increases as ¢, increases. The numerical solution
must also increase with 7. Thus, we are concerned with the relative accuracy,
to a fixed number of significant figures, than with the absolute accuracy, to
a fixed number of decimal places. Here, the relative stability is an important

condition. This is ensured if the numerical solution does not increase faster
than the true solution. For Euler’s method we have

11+ | M A >0

which shows that the method is always relatively stable.
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2.5.1 Fourth order Runge-Kutta method
We apply the classical fourth order Runge-Kutta method to Equatlon (2.45)
and get
Kl=hf(tn, Vn)
=M y, ‘
. Ka=hf(t,+4h, ya+1K,)
=Mk (Yut37R ya)
=[Ah+1 (A1) ya
Ky=hf(ta+1h, yit+1K3)
=k (yat-3 Ah4-3 (AR)?) yn)
=[Ah+§ (A)2+-1 (\1)*] yn
Ky =hf (tat-h, yatKs)
=M [yat+ M+ (AR 4 (AR)?) 3,
=[Ah+AhR+E 0P +3 Qb yn
Yurr=yn+3 (Ki+2Kz+2K;+ K)
=Yat% (M) yat-§ (A} (AR)?) 1
+8(Ah+3 (AR 43 (M) ya
+3 (A4 (Ah)2+-§ (Ah)*+ i (AR)*) ya
=[14+Ah+1} (AR)2+3 M)+ (BV)*] ya
Thus, the growth fabtor for the fourth order method is

2 (AR (AR
Ei)=1 4+ N4 w,) N (31:) i (:’)
whereas the growth factor of the exact solution is &, If Ak > 0, then
eM > E(Mh); so the fourth order Runge-Kutta method is always relatively
stable. However, if Ah < 0, then to find the interval of absolute stability we
construct the following table:

Moo 0 =1+ =2 =22 —2.6 ~3.0
EME) 1 03750 03330 04212 07547 - 1.375
The graph of E(Ah) and e for various order Run‘ge-K_u_tta- méthods is
shown in Figure 2.3. We rotice from this graph that for A < 0 the fourth -

order- Runge-Kutta method first fails to be relatively stable, and then to be
absolutely stable. The interval of absolute stability is —2.78 < Ak < 0.

2.5, 2 Euler extrapolatlon method v
The first column of the Y-scheme for the Euler cxtrapolatlon method for

-(2.48) is given by .
Y®= (1+M") Yn
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Fig. 2.3 Stability of Runge-Kutta method

and the other columns can be generated from the relation (2.40),

2m yet— v,

Y= =" (2.49)
n .
== Eoclm m-J Y((,k"'”
k+J
. m Mo \2
== [,g,cms IM—} (l+iﬁ°7) ]y"
where Cmm_y = 2™ Cmoyym_j = Cm_ty m_1-J

m—]
Cm-tym = Cm_yy | = 0
If for somek = Kand m = M, the extrapoléted value Y{Kis taken as yus,
then we can write (2.49) as

y’H’i = E(MO’ Ks M) n
. N A Mip \,*
| where E (Ahy, K. M) = §°CM»M—I( ‘+§?‘.+J)
Thus the Euler extrapolation method is absolutely stable if

| E(o, K, M) | € 1

In order to find the interval of absolute stability forvariousvalues of K and

M, we determine the values of Ahg corresponding to K and M such that

| E (Ao, K, M)} = L. The principal diagonal of . the Y-scheme converges

faster than any other diagonal or-column and so we determine the interval

of absolute stability for KX = 0 and various values of M. We have for
M=3:5
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3 (cf K+ 3c h? (an Ky +a12K3) fury

+3c,h (a“K1+auK,)2f,,,
+(anK+aiKo) fyp)+.) i = 1,2 257

- Equations (2.57) are implicit and we cannot easily obtain the explicit
expressions for K; and K. In order to determine X and K, explicitly, we
assume the following form -

K, = hA,+th:+h’C,+h‘D;+ yi=12 (2.58)

where A;, B;, C; and D, are unknowns to be determined. Substituting for K,
and K, from (2.58) into (2.57) and on equating powers of h, we obtain

= f
By = cfp+(ayy A\+-an 4)) fy

Ci = (ay B|+a;333)fy+-%-0,’ Jutci (an Aytaiz 42) fiy

+ '%- (aiy A1+aiz A2 fyy

= (ay C1+aiz Ca) fy+ci (ay By+-aia By) foy
+(aiy A1+ai; AN ay By+aiz B) fyy

+1 8 fur _;—cz (an Av+ai 4 fuy

+...l_ ci (ayy Ay+aiz A2 fiyy

2
+ %‘ (an Ay +ai A foyyy i=1,2 (2.59)
Using (2.55) into (2.59), we get
= fu
B, = ¢ Df

1
Ci = (ay cy+tanncl) fy Df+—2 ¢ DY

= [ay (ayy e1+ a2 €2)+ai (a2 ¢y taxn c2)) /i Df
+c¢i (an ¢+an c2) Df D,y

+ —;- (an 2 +aiy 3) fy D’f—l—-—; ¢} DY, i=1,2(2.60)

Equation (2.54) with the help of (2.58) may be written as
Ynr = Yn+h (wy Ai+w2 A)+h? (w Bi+wz By
+h3 (w; Ci+w; C2)+h (wy Dy+w;y Dy)+... (2.61)
_where A;, B;, C; and D, are given by (2.60). Comparing (2.61) with (2.56)

and equating the powers of 4, we can obtain implicit Runge-Kutta methods
of various orders.
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2.6.1 Second order method ]
Equating the coefficients of 4 and A2, we get the following equations

Wi+ wy = 1
W) C|+W2 [+7] - ‘%‘

where ¢ = a11+a;3, ¢3 = any-tan.

There are now four arbitrary parameters to be prescribed. If we neglect
K, i.e. if we choosc a2, = a3 = a,3 =0, w; = 0 then on solving the above
equations, we find '

cl=_l—,wl=l

2
The second order implicit Runge-Kutta method with v = 1 is obtained

Ky = if (1t by 3ot 5 K1)

' Yaet = Yt K ) ' (262
Applying (2.62) to y’' = Ay, we have
1+Ah/2

Yn4r = P=Y77] n

which givesa numerical method based on second order rational approxima-
tion to ¢ and it has stability interval (—eo, 0), A < 0.

2.6.2 Third ordermethod ,
Here we have the following system of equations

W)+W3 = ]

- 1
wiCy+wacy = 5

wi (ay1 ¢+ ay2 ca)+wa (@2 ¢y +az; c2) = -;-
wy ci+wa ci= —;—
and a1 = ay+ay,, c2 = an+an (2.63)
The two arbitrary parameters can be chosen on the basis that either X; is
explicit or K is explicit. If we want K, to be explicit then we choose
o ay=a3;=0
On solving (2.63), we get

2 . 1
c =0, Q™3 G =dn =73

1 3.
Wi =, Wy =



60 NUMERICAL SOLUTIONS

If in (2.67), we choose ¢;=0 or c,=1, then (2.67) becomes Radau’s quadra-

ture formula and the implicit method has order 20— 1, Using the condition
(2.52), we have ' :

(i) =0, a;;=a,3...=a,,=0 and ¢, c3,..., ¢, are arbitrary
The arbitrary parameters ¢z, c3,..-, ¢y are the roots of the polynomial

d'-! - . ’
70—]._1 [cl (l_c)l l]=0: .’=2’ 39"': v (2-70)

(ii) co=1, a1v=az...=asy=0

- The parameters ci, Ca,..., Co_; are arbitrary and can be chosen as the roots
of the polynomial

dv—l .
T T [t (1-c)]=0 .71)

Similarly, if we take ¢,;=0, c,=1, then (2.67) becomes Lobatto’s quadrature

formula and the implicit method has order 2v—2. In view of the condition
(2.52), we get '

1=0; aj1=a3..-=a,s=0
Co=1; Q1y=03¢:++=20ge=0
and ¢z, c3...c,_; are given by the roots of the polynomial

Z::, fer-t (l—-c)"f]=0 (2.72)

We now list a few high order methods.

Fifth order methods .

0 Q | 0 0
(6-46)10| (9+6)/15 (24+4/6 )/120 (168 —731/6)/600
6+v6)/10| O-v6)715 (168+734/6)/600  (24—1/6)/120

1/9 (164+46)/36 (16—4/6)/36
Runge-Kutta-Butcher method with Radau nodes
@=4/5)10 | (24—+/§)/120 (24-114/§)/120 0
(4+4/6)10 | (24+114/)/120 (24+4/6)/120 0
1 6- /512 6++/6 )12 0
(16—4/6 )/36 (16+4/6)/36 1/9

~ Runge-Kutta-Butcher method with Radau nodes
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Sixth order methods

(5-4/15)/10 5/36 (10-34/15)/45 (25—64/15)/180 -
1/2 (10+34/15)/72 2/9 (10-34/15)/72
(5+4V15)/10] (25+6V15)/180 (10+34/15 )/45 5/36
5/18 8/18 5/18

Runge-Kutta-Butcher method with Gaussian nodes

0 ‘ 0 0 0 0
5=45)10] (5+4/5)/60 1/6 (15—74/5)/60 0
(5+4/5)/10| (5-4/5)60 (15+74/5)/60 1/6 0

1 | 1/6 S-vV5)yr2  s+v5)yn 0

1/12 5/12 5/12 1/12

Runge-Kutta-Butcher method with Lobatto nodes

Finally, the implicit Runge-Kutta methods have these advantages: They
have large stability interval, and high order for the number of K;’s or the
function evaluations. A disadvantage of the methods is that they require a
system of linear or nonlinear equations depending on f, to be solved at each
step.

2.7 OBRECHKOFF METHODS

The Taylor series method of order p can be obtained easily if it is possible
to find the second and higher order derivatives from the given differential
equation. The method is explicit and gives a pth degree polynomial approxi-
mation to e when it is applied to the differential equatlon y' =y, ¥ (to)=yo.
The interval of absolute stability is finite.

We shall now develop implicit single step method based on first p deriva-
tives of y(z) at ¢, and ty4,. The method has maximum order 2p and it is
absolutely stable on (—oo, 0).

The general method is defined by

q , » )
Ynt1=ynt zl ai bt yﬁ.‘l,+ 2:1 bi bt y® (2.73)
[ -
where a; and b; are arbitrary. The true value y (t,) will satisfy

Tw=y (tar1) =y (t’) — ‘_)fl a; bt y® (tayy) — é bi k' y (1) (2.74)

\



64 NUMERICAL SOLUTIONS

Thus the method (2.75) becomes

" |
Yt = J’n+ hy"“ h’y,,+1+-§-hy,, (2.85)

The principal root of the charactenstic equation of method (2.85) is
given by

1
+=A
1 3 h
2 1
—_ Mg A2
3 -t 6 h
and it is plotted in Figure 2.6.

§E=

[N A
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4 i —
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-

Fig. 2.6 Principal root of the third order method

We find that the method (2.85) is not only absolutely stable in the inter-
val (—eo», 0) but it is also stable for all positive M > 6. Keeping a; arbit-
rary, we obtain from (2.84)

bl=]—‘a|
a=t-1a
2T T2
1 1
b2= 5“——‘2—(11

Substituting in (2.75), we get
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a third order method with one arbitrary parameter. The principal root is
found to be

1+An(1 —a1)+A2h2(—;—-— %— a )

¢ = 11
l—/\hal—/\zh2 (-?'——i— a )

The value a, = 14+ 3/3 gives a third order method which has optimal
stability.

2.7.3 Fourth order method
If, in addition to (2.84), we take

1 1 _1
T a '*'T a = 24 (2.87)
then we obtain a fourth order method as
h ’ ’ hz ”” ’
Yaypy = ,vn+-5(y,.+,+y,.)+ﬁ (=Vus1 TV (2.88)

The method (2.88) is absolutely stable on (— o9, 0).
Alternatively, we may write (2.73) in the form
Yner = Ppya (hD) ya (2.89)
where Py, ¢ (hD) = P, (hD)/Qq (hD)

P, (hD) = 1+ gb, (hD)!

and Q¢ (hD) = 1— ‘éla, (hDY

Equation (2.89) represents an approximation to the equation
Y (tary) = €2 y (tn)
The function P,, ¢ (D) is a rational approximation to ef® Table 2.4 con-
tains approximations of &*°. Thus, depending on the values of p and g we
obtain the following cases: :
(i) ¢ = 0, we get b = 1/i! and (2.73) becomes the Taylor series method
of order p.
(ii) p = 0, we obtain a; = (—1)*! 1/i! and (2.73) becomes the backward
Taylor series method of order g which is absolutely stable on (— oo, 0).
oy — (1Y = _P (2p—i)!
(iii) p = ¢, we find that @ = (—1)'*' b, and b, p) (=it
The method (2.73) becomes
= P& QCp=i) e avim1 0 )
Yni1 = y’l+ (zp)!‘gl (p—i)!l!h [( 1) y..+1+}’,.]
and it has order 2p. The interval of absolute stability is (— oo, 0).
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2.8.2 Runge-Kutta methods
The classical fourth order Runge-Kutta formula becomes

1
Yier = Y1t (K +2K,+2K3+Ks) (2.93)
K K2 Ky K4
-where Ki=| Ka [ Ka=| Ko | Ks=| Ky3 | Ky=] Ka
k,,] kn-z knJ kn‘
and K]l = hfl (tia yls iy )’2, iy *00y Vs l')

1 1 1 1
Kj2 = Hf; ( it b yu it 5 K ya, 1t Katy ooy i+ Knl)

1 1 1 1
K3 = hfj ( tl+7 h, yi, l+‘2‘ K3, ya '+—i— Kaas vees ¥y 1+7 an)

Kjy = hf; (ti+h, yy, i+ Kis, y2, i+ K2, ooy dn it Kna), j= 1.2, oy n
In an explicit form (2.93) may be expressed as

Vioi+r ) Y i [ K, K K3 K4 11
1 ¢ ;

Y2y i+1 = | Y21 +?<. K.zl +2 K_zz +2 K_z; + 1(:24 ?
: : j : : : : :
Yns 141 Ynoi L Ky an .J . Kns Kny J

Example 2.4 Solve the initial value problem
x=y x(0)=0
Y =-x,y0) =1,1€I01]
by second order Runge-Kutta method with A = 0. 1.
Forn=0
to=0,x=0,)p =1
Ky = hfy (o, X0, yo) = .1(1) = .1
Kot = hf; (to, X0, yo) = -1(0) = 0
Ki2 = hf, (to+h, xo+ K1, yo+-Kz2) = 1 (14+0) = .1
K2 = hfa (to+h, xo+Kyy, yo+Ka2) = .1 (0—.1) =—.01

Xy = x°+';"‘ (K11+K12) = 0+"’%" (1+.]) = .]

3 = yot g (KatKn) = 1+ (0= .01) = 1-.005 = .95

Forn =1
ty=.L,x=.y =.995
K = hfy (1, x1, y1) = .1(.995) = .0995
Ky = hfz (ty, x1, 1) = .1 (—=.1) =—.01
Ky = hfy (ty+h, x,+ Ky, yi+K21) = .1 (995—.01)
== 0985
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Ky = hfa(ti+h, x+ Ky, 1+ Ka) = A [—(.14.0995)]

=—.01995

1
Xy = x1+—2-' (Kn+Ki2)

=1 +—;— (.0995+.09

= .,1990

y2 =yt -12‘ (Ka+K32)

85)

= 995+ (—.01—.01995)

= .980025.

The exact solution is given by

The computed solution is listed in Table 2.5.

x(1) = sin¢t, ¥(t) = cos t

TABLE 2.5 SOLUTION OF x’

SECOND ORDER RUNGE-KuUTTA METHOD WITH h = 0.1

69

=y, ' =—x, x(0) = 0, y(0) = 1 BY THE

ta

0.1

0.2 -

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0

Xn Vn x(tn)

0 1 0
0.1 0.995 0.099833
0.1990 0.980025 0.198669
0.296008 0.955225 0.295520
0.390050 0.920848 0.389418
0.480185 0.877239 0.479426
0.565507 0.824834 0.564642
0.645163 0.764159 0.644218
0.718353 0.695822 0.717356
0.784344 0.620508 0.783327
0.842473 0.538971 0.841471

y(ts)

1
0.995005
0.980067
0.955336
0.921061
0.877583
0.825336
0.764842
0.696707
0.621610
0.540302

2.8.3 Stability analysis

The stability of the numerical methods for the system of first order differ-
ential equations is discussed by applying the numerical methods to the
homogeneous locally linearized form of the equation (2.90). Assuming that

. . . -/
the functions f; have continuous partial derivatives al—y', = q;; and A denotes

the n X n matrix [a;;], we may to terms of the first order write (2.90) as
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Fig. 2.7 Stability region for the fourth order Runge-Kutta methed.

2.8.4 Stiff system of differential equations
There are many physical problems which lead to a system of ordinary
differential equations with a property given by the following definition.

DEFINITION 2.4 A system of ordinary differential equations (2.90) is said
to be stiff it the cigenvalues of the Jacobian matrix [%] at every point of

have negative real parts and differ greatly in magnitude.

We now study the main difficulties associated with the numerical solution
of the stiff differential equations by applying the fourth order Runge-Kutta
method to (2.94) when it is a stiff system, i.e., the eigenvalues A; of the
matrix A satisfy the conditions:

(i) RealA; < 0,j=1,2, «eeyn
(i1) mjax | Real A; | » min | Reald; |, j=1,2, ..
3

If Aj is an eigenvalue of A whose real part is large in magnitude and ¥; (1)
represents, the component of the corresponding numerical solution then
using (2.104) with p = 4, the following relationship is obtained

_ (W2 (hA;)3
Villivr) = it = [1 +h4;+ 1_23‘“*‘ ,3!)'

n\; 4 :
(h\/)_ Vivhs i= 0, ]’ 2, (2]05)
4! '
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Initially we require ¥, (t) to be accurate so we expect to keep | 4A; | small,
but when | 7, (1) | has become negligible related to y (¢) it is unnecessary to
require accuracy and we need only to ensure that | J; (t) | does not grow.
It has already been shown that to keep | pju+s | < | 34 | it is necessary
that | iA; | < 2.78, approximately. Thus, the main difficulty encountered
in solving stiff equations is that even though the component of the true
solution corresponding to };, soon becomes negligible, the restriction on
step size imposed by the stability requires that | /14; | remain small through-
out the range of integration. Therefore, a numerical method must have very
strong stability properties if it is to be efficient. -

DEFINITION 2.5 A numerical method of the form (2.91) is called A-stable
in the sense of Dahlquist if the region of stability associated with the
method contains the open left-half-plane.

The fourth order Runge-Kutta method is not A-stable because it has finite
region of stability on the left half-plane. The fully implicit Runge-Kutta-
Butcher method (2.66) and other similar methods are A-stable. The Obrech-
koff methods (2.89) are also A-stable. If we use the fourth order Runge-
Kutta method to solve the stiff system of differentialequations then we must
limit the step size to a small value of the order of the reciprocal of the
magnitude of the real part of the largest eigenvalue. Alternatively, if an A-
stable implicit method is applied to a nonlinear system (2.90) it defines the
value ¥(t) at t,,, of the numerical solution implicitly by the nonlinear algeb-
raic system

y = g(y) (2.106)
The stability requirement does no longer restrict the choice of step size.
However we must solve the system (2.106) at each step by scme iterative
method. The convergence requirements for the iterative solution of (2.106)
places restrictions on the largest step size that can be used. Thus, to solve
the stiff differential system (2.90) we need not only the numerical methods
with strong stability condition but also the accurate iterative methods for
solving nonlinear algebraic system (2.106).

2.9 HIGHER ORDER DIFFERENTIAL EQUATIONS

The higher order equations can be solved by considering an equivalent
svstem of first order equations. However, it 1s also possible to develop direct
singlestep methods to solve higher order equations.

2.9.1 Runge-Kutta methods
Let us study the Runge-Kutta methods for a general second order equation
Y= f(t, 3, v), t € [to. D] (2.107)

with the initial conditions
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, 1
Yary = YaThy,+ —,;‘(Kl‘*'Kz)

J + (l\l T 3K2)

yn+l =

NUMERICAL SOLUTIONS

The Runge-Kutta method using four K’s is given by

Kl == h_. f(’m Yoo ¥ )
K2 = _/12:_"(111':_ L:,l', ,1',,“%";— ]11"+
Y hz ] '—l—
1\3_ 2f([ﬁl—{ 2, ‘“| 2 /,‘". 4
. h? .
1‘4 = -2_/ - II, 1n+/”“ 1\3, _}‘"-',—-
. 1, ) ;
Yngt = _"n‘i',l,l'n",— —j-(l\l+]\2+1\3)
: ] o
v"n+l = y,,+ '37 (K1+2K2+21\3+k4)

]\’l) ‘;,+ /_

Kz)

-

7"3)

(2.116)

1f the function f is independent of y’, then we can construct a Runge-Kutta

method in which the local

get
Wi+Wa=1 W +W,=2
a2W2 e "1— Wéaz =1
3
Wza2 = %
, 2
W202| == —3"'
which has the solution
T A
2~ 3 ’ 2] = 9
1 , 3 , 1
W|='- W2 =_2‘,W2= _2'9 W1='§—

truncation error in v

and y’ is 0 (1%). Here we

Thus the Runge-Kutta method for the second order initial value problem

y'=f(7y)
y(to) = yo, ¥' (to) = .)’;)

12
—2’7 £ (tny ¥)

becomes K, =

4
K2 2' f (t"+ ha) + hyu 9 K')

2.117)

(2.118)



